HIGH ISOLATION GATE DRIVE TRANSFORMER

Ruggedized

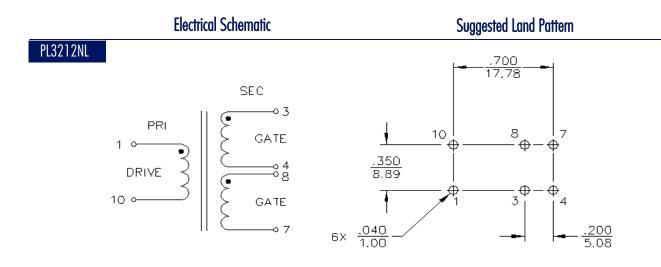
PL3212NL

- Rugged design for industrial application
- Operating Frequency: 50kHz to 300kHz
- Lead Finish:Pure Tin

	Electrica	I Specific	ations @ 25 °C – Op	erating Temperatu	re − 40°C to	+125 °C	1	
Part Number	Turns Ratio 100kHz 0.1Vrms (±2%)	ET (V * µsec	Primary Inductance 100kHz 0.1Vrms (µH MIN)	Leakage Inductance Gate to Drive 100kHz 0.02A (µH MAX)	DCR Drive (1-10)	DCR Gates	"Hi-Pot 60Hz 60s (Vrms)"	
		MAX)	(1-10)	(1-10) other pins shorts	(mΩ ±20%)	(mΩ ±20%)	Drive-Gate	Gate-Gate
PL3212NL	1:1:1	95	450	0.5	80	72	3000	1500

Notes: 1. Inductance and leakage inductance are measured with Agilent 4284A or equivalent.

2. Turns ratio is measured with Wayne Kerr 3260B or equivalent.

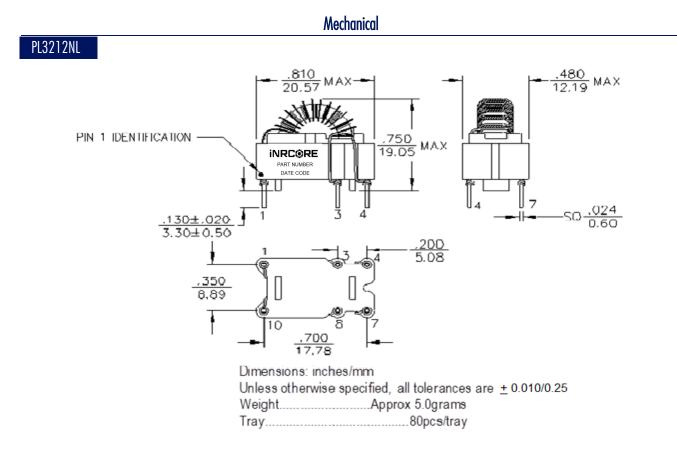

3. DCR is measured with Valhalla Scientific 4150ATC or equivalent.

4. Hi-Pot is performed with Kikusui TOS5051 or equivalent.

5. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following procedure to calculate the peak flux density:

- A. Calculate the Volt-usec product (ET):
 - ET = 10 * (Drive Voltage) * (Don) / (Frequency in kHz)

B. Calculate the operating flux density (B): BPK (Gauss) = $X \times ET/Ff$ where: Ff = 1 for unipolar drive applications and 2 for bipolar drive applications,



www.inrcore.com

HIGH ISOLATION GATE DRIVE TRANSFORMER

Ruggedized

For More Information

iNRCORE,LLC 311 Sinclair Road Bristol, PA 19007-6812 U.S.A Tel: + 1.215.781.6400 Fax: +1.215.7816430 Global Sales Representatives and Locations: http://www.inrcore.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. iNRCORE, LLC. All rights reserved.

www.inrcore.com